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Abstract In this paper we consider a five compartmental HIV/AIDS epidemic model with delay. We
first investigate the existence and stability of the equilibria and then we study the effect of the time delay
as the stability of the infected equilibrium. Criteria are given to ensure that the infected equilibrium is
asymptotically stable for all delay. Morever by applying Nyquist criteria, the, length of delay is estimated
for which stability continues to hold. By using a delay τ as a bifurcation parameter, the existence of
Hopf-bifurcation is also investigated.
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1 Introduction

In the last decade, many mathematical models have been developed to describe the immunolog-
ical response to infection with human immunodeficiency virus (HIV) (for example, [1 - 11] and so
on). These models have been used to explain different phenomena. For more references and some
detailed mathematical analysis on such models, we refer to the survey papers by Kirschner [12] and
Perelson and Nelson [13].

Human immunodeficiency virus (HIV) is the causative agent of acquired immun- odeficiency
syndrome (AIDS), a disease that causes progressive failure of the immune system. HIV is an RNA
retrovirus. That is, to enter a cell, HIV translates its RNA to DNA with a viral enzyme called
reverse transcriptase. The target cell of HIV is CD4+ T cells. A healthy human body has about
1000/mm3 of CD4+ T cells. When the CD4 T cells of a patient decline to 200/mm3 or below,
then that person is classified as having AIDS. When the CD4 T cells decline, they cannot mount a
strong response. This results in weak responses from CTL and antibodies which cannot clear the
infection.

There are three states for HIV infection:
1. The primary infection occurs within a few weeks of acquiring the virus and is the first stage.
Usually the virus load increases during this stage. This stage is similar to the symptoms of u. The
number of CD4+ T cells significantly decrease and then return to almost normal level.
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2. The chronic stage of asymptomatic infection in which there are no considerable symptoms of
disease is the second stage. The immune system is active. This stage lasts an average of 10 years. 3.
The acute stage in which there are symptoms of the disease is the final stage, leading to AIDS. The
immune system can no longer defend the body and one or more other infections occur. Eventually
a patient dies from these other infections.

Time delays of one type or another have been incorporated into biological models by many
authors (for example, [14 - 16] and the references cited therein). In general, delay-differential
equations exhibit much more complicated dynamics than ordinary differential equations since a time
delay could cause a stable equilibrium to become unstable and cause the populations to fluctuate.

Swarnali Sharma and Samanta [17] consider the model

dS

dt
= ∧ − (β1I1 + β2I2)S − µS,

dI1

dt
= (β1I1 + β2I2)S + η(I1 + I2)− (α + µ)I1,

dI2

dt
= αI1 − (σ + ρ + µ)I2, (1)

dT

dt
= ρI2 − (γ + µ)T,

dA

dt
= γT + σI2 − (d + µ)A,

with initial densities

S(0) > 0, I1(0) > 0, I2(0) ≥ 0, T (0) ≥ 0, A(0) ≥ 0.

Here S(t), I1(t), I2(t), T (t), and A(t) represent population densities (or fractions) of susceptible
population, infective population in asymptomatic phase, infective population in symptomatic phase,
infective population in treatment and full-blown AIDS group. So, N(t) = S(t) + I1(t) + I2(t) +
T (t) + A(t) denotes the total number of high-risk human population at time t.
The model parameters are as follows:

• ∧ : the recruitment rate of susceptible population from the larger embedding population,

• β1 : horizantal transmission rate coefficient of infection when susceptible humans come in
contact with the infective in the first stage (asymptomatic stage) and the rate transmission
is of the form β1S(t)I1(t),

• β2 : horizontal transmission rate coefficient of infection when susceptible humans come in
contact with the infective in the second stage (symptomatic stage) and the rate transmission
is of the form β2S(t)I2(t),

64



TEJAS Thiagarajar College Journal ISSN(Online): 2456-4044
January 2017, Vol. 2(1) PP 63-76

• η : vertical transmission rate coefficient, i.e., the rate of recruitment of new borne infected
children into the first infectious stage (asymptomatic stage),

• α : progression rate to second stage (symptomatic stage) infectious class from the first stage
(asymptomatic stage) infectious class,

• ρ : the proportion of infective poppulation in symptomatic phase who enter into treatment,

• σ : progression rate to full-blown AIDS class from the second stage (symptomatic stage) in-
fectious class,

• γ : rate of transfer from treatment class to a full-blown AIDS group,

• d : disease related death rate of the full-blown AIDS group,

• µ: natural death rate of population.

This model involves certain assumptions which consists of the following:

1. The susceptible population (S) is composed of individuals who have not yet been infected
by HIV but may be infected through sexual interrcourse or other ways with both types of
infectives (infectives in asymptomatic phase (I1) and symptomatic phase (I2)).

2. The infective population in asymptomatic phase (I1) is composed of individuals who have
HIV infection without any symptoms.

3. The infective population in symptomatic phase (I2) is composed of individuals who have
developed HIV infection with complications and various symptoms.

4. The infective population in treatment class (T) is composed of infective individuals who are
in symptomatic phase, but become aware of their infection and enter into the drug therapy.

5. The full-blown AIDS class (A) is composed of individuals whose body’s immune system has
been totally suppressed by HIV infection and they are in the final stage of AIDS.

6. For simplicity, only two stages of HIV infection are considered according to clinic stages [23,
48], i.e., the asymptomatic phase (I1) and symptomatic phase (I2).

7. The susceptible individuals become infected by adequate contact with infective individuals
both in asymptomatic phase and symptomatic phase.
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8. Vertical transmission is considered only into the first infectious stage (asymptomatic stage)
transmitted by infective individuals who are in asymptomatic phase and symptomatic phase.

9. The infective population in treatment do not contribute viral transmission horizontally and
vertically due to stringent measures.

10. The full-blown AIDS class is considered to be too ill to remain sexually active. So, they do
not contribute viral transmission both horizontally and vertically.

11. Natural death rate of the populations (µ) is considered as greater than the vertical transmis-

sion coefficient (η), i.e., µ > η and η < (α+µ)(ρ+σ+µ)
(ρ+σ+µ+α)

.

In order to make model (1) more realistic, time delay should be included in the following model:

dS

dt
= ∧ − β1I1S − β2I2(t− τ)S(t− τ)− µS,

dI1

dt
= β1I1S + β2I2(t− τ)S(t− τ) + η(I1 + I2)− (α + µ)I1, (2)

dI2

dt
= αI1 − (ρ + σ + µ)I2.

dT

dt
= ρI2 − (γ + µ)T,

dA

dt
= γT + σI2 − (d + µ)A.

with initial conditions are given by

S(ϑ) = ϕ1(ϑ), I1(ϑ) = ϕ2(ϑ), I2(ϑ) = ϕ3(ϑ), T (ϑ) = ϕ4(ϑ), A(ϑ) = ϕ5(ϑ) (3)

such that ϕi(ϑ) ≥ 0(i = 1, 2, 3, 4, 5), for all ϑε[−τ, 0],
where ϕi(ϑ) ≥ 0(i = 1, 2, 3, 4, 5) are non-negative continuous functions on ϑε[−τ, 0].

The outline of the present paper is as follows. The next section is devoted to the wellposedness
and positivity of the solution. In Section 3, we study the qualitative behavior of the model via
stability of the steady states and Hopf bifurcation when time delay is considered as a bifurcation
parameter. In Section 4, the length of delay to preserve stability are established

2 Basic Properties

Theorem 1. The feasible region Γ defined by

Γ =

{
(S(t), I1(t), I2(t), T (t), A(t)) εR5

+ : 0 < N ≤ ∧
µ− η

}
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with initial conditions S(0) > 0, I1(0) > 0, I2(0) ≥ 0, T (0) ≥ 0, A(0) ≥ 0, is positively invari-
ent.
Proof:

Adding the equations of the system (2) we obtain

dN

dt
= ∧+ η(I1 + I2)− µN − dA

= ∧+ η(N − S − T − A)− µN − dA

≤ ∧− (µ− η)N.

The solution N(t) of the above differential equation has the following property:

0 < N(t) ≤ N(0)e−(µ−η)t +
∧

µ− η
(1− e−(µ−η)t),

where N(0) represents the sum of the initial values of the variables. As t → ∞.0 < N ≤ ∧
µ−η

. So

if N(0) ≤ ∧
µ−η

then limt→∞N(t) ≤ ∧
µ−η

. This means that ∧
µ−η

is the upper bound of N. On the

other hand, if N(0) > ∧
µ−η

, then N(t) will decrease to ∧
µ−η

. This means that if N(0) > ∧
µ−η

, then

the solution (S(t), I1(t), I2(t), T (t), A(t)) enters Γ or approaches it asymptotically. Hence it is
positively invariant under the flow induced by the system (1).

Theorem 2. Every solutions of system (1) with initial conditions (2) exists in the intervel
[0,∞) and S(t) > 0, I1(t) > 0, I2(t) ≥ 0. T(t) ≥ 0 and A(t) ≥ 0, for all t ≥ 0.

Since the variables T and A of the system (2) do not appear in the first three equations, in the
subsequent analysis we only consider the following subsystem:

dS

dt
= ∧ − β1I1S − β2I2(t− τ)S(t− τ)− µS,

dI1

dt
= β1I1S + β2I2(t− τ)S(t− τ) + η(I1 + I2)− (α + µ)I1, (4)

dI2

dt
= αI1 − (α + ρ + µ)I2,

with initial conditions are given by

S(ϑ) = ϕ1(ϑ), I1(ϑ) = ϕ2(ϑ), I2(ϑ) = ϕ3(ϑ), (5)

such that ϕi(ϑ) ≥ 0(i = 1, 2, 3), for all ϑε[−τ, 0],
where ϕi(ϑ) ≥ 0(i = 1, 2, 3) are non-negative continuous functions on ϑε[−τ, 0].
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3 Steady States

We can obtain the steady state values by setting dS
dt

= dI1
dt

= dI2
dt

= 0. The steady state value
of the infection-free steady sate E0 is given by E0 = (∧

µ
, 0, 0) while the infected steady state E∗ is

given by E∗ = (S∗, I∗1 , I
∗
2 ), where,

S∗ =
(α + µ− η)(ρ + σ + µ)− αη

β1(ρ + σ + µ) + αβ2

=
∧
µ

1

R0

> 0 [sinceR0 > 0]

I∗1 =
∧(ρ + σ + µ)

S∗[β1(ρ + σ + µ) + β2α]

(
1− 1

R0

)
I∗2 =

αI∗1
ρ + σ + µ

.

3.1. Stability and Hopf Bifurcation Analysis of Infected Steady State E∗.

In order to study full dynamics of model (4) by using time delay as a bifurcation parameter, we
need to linearize the model around the steady state E∗ and determine the characteristic equation
of the Jacobian matrix.The roots of the characteristic equation determine the asymptotic stability
and existence of Hopf bifurcation for the model.The characteristic equation of the linearized system
is given by

λ3 + A1λ
2 + A2λ + (A4λ

2 + A5λ + A6)e
−λτ = 0 (6)

where

A1 = −a33 − a22 − a11,

A2 = a22a33 − a23a32 + a11a33 + a11a22 − a12a21,

A3 = a11a23a32 − a11a22a33 + a12a21a33,

A4 = −b11,

A5 = −a32b23 + b11a33 + b11a22 − a12b21,

A6 = a11a32b23 − b11a22a33 + b11a23a32 + a12a33b21,

It is well known that the stability of the equilibrium of delay differential equation depends on the
distribution of the zeros of characteristic equation. In the following we shall use the main results in
Ruan and Wei [18], which is a generalization of the lemma in Cook and Grossman [19], to analyze
the distribution of characteristic roots for (6), we first state the useful lemma as follows:
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Lemma: 1 Consider the following exponential polynomial

p(λ, e−λτ1 , e−λτ2 , ..., e−λτm)

= λn + p0
1λ

n−1 + p0
2λ

n−2 + ... + p0
n

+ [p1
1λ

n−1 + p1
n−2 + ... + p1

n]e−λτ1

+ ...+

+ [pm
1 λn−1 + pm

n−2λ
n−2 + ... + pm

n ]eλτm

where τi ≥ 0.(i = 1, 2, ...,m) and pi
j(i = o, 1, ...m; j = 1, 2, ...n) are constants as (τ1, τ2, ...τm) vary

the sum of the zeros of p(λ, e−λτ1 , e−λτ2 , ...e−λτm) in the open right half plane can change only if a
zero appears on or crosses the imaginary axis.

This means that the number of characteristic roots with positive real parts can chage only if
there exists purely imaginary roots.
Theorem 3. For τ = 0, the unique nontrivial equilibrium is locally asymptotically stable if the
real parts of all the roots of (4) are negative.

3.2 Existence of Hopf Bifurcation. We here study the impact of the time-delay parameter on
the stability of HIV infection model. We deduce criteria that ensure the asymptotic stability of
infected steady state E∗, for all τ > 0.

For τ 6= 0, we consider τ as bifurcation parameter and assume a purely imaginary solution of
(6) is the form λ = iω(ω 6= 0). Therefore, substituting λ = iω in equation (6) and then separating
real and imaginary parts, we get

ω3 − A2ω = sin ωτ(A4ω
2 − A6) + A5ω cos ωτ (7)

−A1ω
2 + A3 = cos ωτ(A4ω

2 − A6)− A5ω sin ωτ. (8)

Eliminating τ by squaring and adding, we get the equation for determining ω as

ω6 + d1ω
4 + d2ω

2 + d3 = 0 (9)

where

d1 = A2
1 − 2A2 − A2

4,

d2 = A2
2 − 2A1A3 + 2A4A6 − A2

5,

d3 = A2
3 − A2

6

substituting ω2 = z in (9), we set a cubic equation given by

h(z) ≡ z3 + d1z
2 + d2z + d3 = 0 (10)

The roots of equation (10) are the square of the roots of equation (9) and therefore are positive.
Now we have assumed that the time delay τ is bifurcation parameter. Since the stability change
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occurs for the change of delay parameter value, we can assume that the eigenvalue λ is a function
of τ . Again let

λ(τ) = γ(τ) + iω(τ)

be a root of characteristic equation (6) such that the following two conditions hold;

γ(τk) = 0,

ω(τk) = ω0

at some value of τ = τk.
Now, from equations(7) and (8), we get

τk =
1

ω0

arccos

(
(a4ω

2
0 − a6)(a3 − a1ω

2
0) + a5ω

2
0(ω

2
0 − a2)

(a4ω2
0 − a6)2 + a2

5ω
2
0

)
+

2kπ

ω0

, k = 0, 1, 2, ... (11)

Next we determine sign

{(
d(Reλ)

dτ

)
λ=iω0

}
where sign is the sign function and Re(λ) is the real part of λ.

Taking the derivative of the characteristic equation (6) with respect to τ , we get(
dλ

dτ

)−1

=
3λ2 + 2a1λ + a2

λe−λτ (a4λ2 + a5λ + a6)
+

2λa4 + a5

λ(a4λ2 + a5λ + a6)
− τ

λ

Evaluating
(

dλ
dτ

)−1
at λ = iω0 and taking the real part, we have

Re

[(
dλ

dτ

)−1

λ=iω0

]
=

1

ω2
0(a4ω2

0 − a6)2 + a2
5ω

4
0

[
−a5ω

2
0

{
(a2 − 3ω2

0) cos(ω0τ)

−2a1ω0 sin(ω0τ)} − ω0(a4ω
2
0 − a6)

{
(a2 − 3ω2

0) sin(ω0τ)

+2a1ω0 cos(ω0τ)}+ 2ω2
0a4(a6 − a4ω

2
0 − a2

5ω
2
0

]
=

1

(a4ω2
0 − a6)2 + a2

5ω
2
0

[
−(a2 − 3ω2

0)(ω
2
0 − a2)

−2a1(a3 − a1ω
2
0) + 2a4(a6 − a4ω

2
0)− a2

5

]
=

[
dh(z)

dz

]
z=ω2

0

(a4ω2
0 − a6)2 + a2

5ω
2
0

Therefore, we get

sign

{(
d(Reλ)

dτ

)
λ=iω0

}
= sign

{
Re

(
dλ

dτ

−1)
λ=iω0

}

= sign

(
dh(z)

dz

)
z=ω2

0
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Now, if z = ω2
0 is the first positive root of equation (9)

sign

{(
d(Reλ)

dτ

)
λ=iω0

}
> 0 as

[
dh(z)

dz

]
z=ω2

0

> 0.

Thus, the transversility condition is satisfied and the steady state becomes unstable when τ > τ ∗,
where τ ∗ is the smallest positive value of τk given in (11). Moreover, a Hopf-bifurcation occurs when
τ passes through the critical value τ ∗.

The above results can be summarized in the following theorem:

Theorem 4. If E∗ exists with the conditions A1 > 0, A3 > 0, and A1A2 − A3 > 0, and
z0 = ω2

0 be a root of (10), then there exists a τ = τ ∗ such that
(i) E∗ is locally asymptotically stable for 0 ≤ τ ≤ τ ∗,
(ii) E∗ is unstable for τ > τ ∗,
(iii) the system (2) undergoes a Hopf-bifurcation around E∗ at τ = τ ∗,

τ ∗ = min g(ω0),

where

g(ω0) =
1

ω0

arccos

[
(a4ω

2
0 − a6)(a3 − a1ω

2
0) + a5ω

2
0(ω

2
0 − a2)

(a4ω2
0 − a6)2 + a2

5ω
2
0

]
and the minimum is taken over all positive ω0 such that ω2

0 is a solution of Eq. (10).

4 Estimation of the Length of Delay to Preserve Stability

In this section we shall try to estimate the length of delay to preserve the stability. We consider
the system (2) and the space of all real valued continuous functions defined on [−τ,∞) satisfying the
initial conditions on [−τ, 0]. We linearize the system (2) about its interior equilibrium E∗(S∗, I∗1 , I

∗
2 )

and get

dx1

dt
= a11x1 + b11x1(t− τ) + a12y1 + b13z1(t− τ),

dy1

dt
= a21x1 + b21x1(t− τ) + a22y1 + a23z1 + b23z1(t− τ), (12)

dz1

dt
= a31x1 + a32y1 + a33z1.

where

S(t) = x1(t) + S∗,

I1(t) = y1(t) + I∗1 ,

I2(t) = z1(t) + I∗2 .
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Taking Laplace transform of the system (2) we get

(s− a11 − b11e
−sτ )x̄1(s) = b11e

−sτk1(s) + a12ȳ1(s) + b13e
−sτ z̄1(s) + b13e

−sτk1(s) + x1(0),

(s− a22)ȳ1(s) = a21x̄1(s) + b21e
−sτ (x̄1(s)) + b21e

−sτk1(s) + a23z̄1(s)

+b23z̄1(s)e
−sτ + b23e

−sτk1(s) + y1(0),

(s− a33)z̄1(s) = a33x̄1(s) + a32ȳ1(s) + z1(0)

where

k1(s) =

∫ 0

−τ

e−sty1(t)dt

where

a11 = −β1I
∗
1 − µ; a21 = β1I

∗
1 ; a31 = 0;

a12 = −β1S
∗; a22 = β1S

∗; a23 = η;

a13 = 0; a23 = η; a33 = −(ρ + σ + µ);

and,

b11 = −β2I
∗
2 (t− τ); b21 = β2I

∗
2 (t− τ)

b13 = β2S(t− τ); b23 = β2S(t− τ)

and all other bij = 0.
and x̄1(s), ȳ1(s), z̄1(s) are the Laplace transforms of x1(t), y1(t), z1(t) respectively.

Now, we will use the Nyquist theorem [16] which states that if s is the arc length along a curve
encirc ling the right half of the plane, then a curve x̄1(s) will encircle the origin a number of times
equal to the difference between the number of poles and the number of zeroes of x̄1(s) in the right
half of the plane.

Using Nyquist theorem [15, 16], it can be shown that the conditions for local asymptotic stability
of E∗(S∗, I∗1 , I∗2 ) are given by [14]

ImH(iω0) > 0, (13)

ReH(iω0) = 0, (14)

where

H(s) = s3 + A1s
2 + A2s + A3 + (A4s

2 + A5s + A6)e
−sτ (15)

and ω0 is the smallest positive root of (14).
We have already shown that E∗(S∗, I∗1 , I

∗
2 ) is stable in absence of delay. Hence, by continuity,
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all eigenvalues will continue to have negative real parts for sufficiently small τ > 0 provided one can
guarantee that no eigenvalue with positive real parts bifurcates from infinity as τ increases from
zero. This can be proved by using Butler’s lemma [14].

In this case, conditions (13) and (14) give

a2ω0 − ω3
0 > −(a4ω

2
0 − a6) sin(ω0τ)− a5ω0 cos(ω0τ), (16)

a3 − a1ω
2
0 = (a4ω

2
0 − a6) cos(ω0τ)− a5ω0 sin(ω0). (17)

Now,(16) and (17), if satisfied simultaneously, are sufficient conditions to guarantee stability. We
shall utilize them to get an estimate on the length of the delay. Our aim is to find an upper bound
ω+ on ω0 independent of τ so that (16) holds for all values of ω, 0 ≤ ω ≤ ω+ and hence in particular
at ω = ω0.
we rewrite (17) as

a1ω
2
0 = a3 + (a6 − a4ω

2
0)cos(ω0τ) + a5ω0sin(ω0τ). (18)

Maximizing a3 + (a6 − a4ω
2
0) cos(ω0τ) + a5ω0 sin(ω0τ) subject to |sin(ω0τ)| ≤ 1, |cos(ω0τ)| ≤ 1, we

obtain

a1ω
2
0 ≤ a3 +

∣∣(a6 − a4ω
2
0)

∣∣ + |a5|ω0

≤ a3 + |a6|+ a4ω
2
0 + |a5|ω0

Therefore

(a1 − a4)ω
2
0 ≤ |a5|ω0 + (a3 + |a6|). (19)

Hence, if

ω+ =
1

2(a1 − a4)

[
|a5|+

√
a2

5 + 4(a1 − a4)(a3 + |a6|)
]

, (20)

then clearly from (19).we have ω0 ≤ ω+. From the inequality (16) we get

ω2
0 < a2 + a5 cos(ω0τ)− (a6 − a4ω

2
0)

ω0

sin(ω0τ). (21)

As E∗(S∗, I∗1 , I
∗
2 ) is locally asymptotically stable for τ = 0, for sufficiently small τ > 0, (21) will

continue to hold. Substituting (18) into (21) and rearranging we get{
a1a5 − (a6 − a4ω

2
0)

}
{1− cos(ω0τ)} +

{
a5ω0 +

a1

ω0

(a6 − a4ω
2
0)

}
sin(ω0τ)

< a1a2 + a1a5 − a3 − (a6 − a4ω
2
0). (22)

Using the bounds we obtain{
a1a5 − (a6 − a4ω

2
0)

}
{1− cos(ω0τ)} = aaa5 − (a6 − a4ω

2
0)2 sin2(

ω0τ

2
)

≤ 1

2

∣∣a1a5 − (a6 − a4ω
2
+)

∣∣ ω2
+τ 2,

(23)
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and

{
a5ω0 +

a1

ω0

(a6 − a4ω
2
0)

}
sin(ω0τ) ≤ a5ω

2
+ + a1(a6 − a4ω

2
+)τ (24)

Now, from (22) to (24) we get

l1τ
2 + l1τ < l3 (25)

where

l1 =
1

2

∣∣a1a5 − (a6 − a4ω
2
+)

∣∣ ω2
+,

l2 = a5ω
2
+ + a1(a6 − a4ω

2
+), (26)

l3 = a1a2 + a1a5 − a3 − (a6 − a4ω
2
0)

Hence, if

τ+ =
1

2l1

[
−l2 +

√
l22 + 4l1l3

]
(27)

then stability is preserved for 0 ≤ τ < τ+. Summarizing the above discussions we come to the
following result:

Theorem 5 The delayed model (2) will be locally asymptotically stable at E∗(S∗, I∗1 , I∗2 ) if the
delay τ lies within the interval (0, τ+) where τ+ is given by (27).

5 Conclusion

The model includes a discrete time delay in the immune activation response, which plays an
important role in the dynamics of the model. The infection-free and endemic steady states of
the model are determined. The stability of steady states is analyzed. We deduced a formula
that determines the critical value (branch value) τ0. Necessary and sufficient conditions for the
equilibrium to be asymptotically stable for all positive delay values are proved. We have seen that
if the time delay exceeds the critical value τ0, model (4) undergoes a Hopf bifurcation. The length
of delay preserving the stability is estimated using Nyquist creteria and existence conditions of the
Hopf-bifurcation for the time delay are investigated by choosing the time delay τ as a bifurcation
parameter.
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